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Abstract - The blind source deconvolution/separation problem is  
considered based on inverse deconvolution model application. A 
new approach to inverse model design based on unknown-input 
observer theory is considered with reference to blind separation 
problem. The method of reduced-order inverse model design in 
proposed and the conditions of inverse model parametric design 
problem solvability are found as a special type of observability. 
For special case of solvability conditions violation a regularized 
inverse model is proposed which ensures the possibility of 
arbitrary pole-placement of inverse model. The method of wave 
source signals identification and prediction is also proposed. 
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I. INTRODUCTION 

The blind source deconvolution/separation problem is 
to recover unknown independent source signals from 
sensors outputs, propagate through the dynamical mixing 
system, without any a priory knowledge of the original 
signals [1]. There are a lot of practical applications of 
blind source deconvolution/separation in many fields of 
data acquisition and signal processing, such as processes 
instrumentation and control, audio and acoustics, 
biomedical experiments. A number of methods for such a 
problem have been developed in last years; one of the 
most perspectives is a state-space approach, based of a 
suitable modification of Kalman Filter [2]. 

Blind deconvolution, treated as an input signals 
recovery, is closely related with the general problem of 
dynamic system inversion. Such a method is restricted by 
typically insufficient inverse system dynamic properties, 
because the parameters of inverse deconvolution model 
are strictly determined by the parameters of mixing 
system. For example, inverse model for nonminimum-
phase mixing system obviously will be unstable. 

In this paper a new approach to reduced-order inverse 
model design based on unknown-input observer (UIO) [3] 
theory is considered with reference to blind separation 
problem. The method of UIO-based inverse model of 
mixing system design is suggested and the conditions of 
inverse model parametric design problem solvability are 
examined. For special case of solvability conditions 
violation a regularized inverse model is proposed which 
ensures the possibility of arbitrary pole-placement of 

designed inverse model and source signal real-time 
identification and forecasting. 

The proposed method of mixing system input signal 
recovery open up the possibilities of blind source signals 
identification and prediction. The ordinary prediction 
methods usually use the simple models like "trend + 
noise" or ARMA models in combination with recurrent 
parameters identification algorithms [4]. In practice, 
however, source signals have a more complex structure, 
for example, like non-periodic oscillating function (so-
called wave signals). The identification problem has 
become more complicated when both amplitudes and 
frequencies are arbitrary and unknown and moreover 
changing in time. In general case such signals are non-
periodic and unknown frequencies extraction by the DFF 
methods [5] in impossible. Alternative approach for wave 
signals prediction uses a tuning digital filters 
implementation [6]. The proposed identification method is 
based on special assignment of wave component auto-
regression model as a superposition of harmonics with 
tuning amplitudes and frequencies. In such a case the 
suitable identification algorithm ensures non-stationary 
frequencies real-time tracking. 

II. PROBLEM STATEMENT 

Consider blind source deconvolution/separation 
problem with reference to multivariable discrete time 
state-space mixing system model: 

,,1 kkkkk CxyBuAxx =+=+  (1) 

where  n
kx R∈  - mixing system state vector at step k,  

p
ku R∈  - vector of unknown input signals, q

ky R∈  - 
vector of output measured signals. Without loss of 
generality one can assume that the model matrices are of 
full rank, namely pB =rank , qC =rank  . 
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with state vector qn
kx −∈R)  will be considered as a 

reduced-order inverse model of mixing system (1), if 
system (2) is asymptotically stable and the following 
conditions take place: 0→− kk uu )

, .∞→k  Thus, 

ku)  may be treated as one step delayed causal unknown 
input signal estimate, obtained by the inverse model (2).  

The basic of proposed approach is the state-space 
representation of the mixing inverse model. If the mixing 
system invertibility conditions 0≠= CBS  and  

pqqS ≥= ,rank  take place, the structure inversion 
algorithm may be applied. The inverse model design 
problem includes the matrices of system (2) 
determination. The suitable method must include the 
corresponding matrices parameterization and free tuning 
parameters selection from the simultaneous conditions of 
stability and desired dynamic properties. The most general 
way for such parameterization is the unknown-input 
observer (UIO) theory [3], and then the observer equation 
combined with the unknown input signal estimate may be 
treated as the designed inverse model.  

III. INVERSE DECONVOLUTION MODEL  

The minimal state-space realization of the inverse 
model may be obtained by means of reduced order UIO. 
Let qn

kRxz −∈= R   be a vector of aggregated auxiliary 

variables, where nqnR ×−∈R   is the appropriate 
aggregate matrix, such that ( ) nRC =TTrank M  , Then 

the state vector estimate n
kx R∈)

  may be obtained by 
minimal-order UIO as follows:  
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where qn
kx −∈R~  - observer state vector, and matrices  

qnP ×  and qnnQ −×  are uniquely determined by selected 

aggregating matrix R  and has the following properties:  
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The observer design conditions (state estimation 
independence from unknown input) are:  
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and a corresponding solution of linear matrix equation (5) 
under the invertibility conditions fulfillment may be 

obtained as  

( )
RHRBSH

PHARGAQRF
==

Ω+Π=Π=
+

,,  (6) 

where projection matrices  

,CBSIn
+−=Π ,+−=Ω SSIq ,CC Ω=Π    (7) 

and "+" denotes Moore-Penrouze generalized inverse.  
Taking an unknown input vector estimate as 

( ),1 kkk xAxBu ))) −= +
+  the reduced-order inverse model 

equations may be obtained in the form:  
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As a result, the inverse model dynamics matrix 
AQRFAI Π== , depends from the arbitrary 

aggregating matrix R  of given rank qn − , which may 
be considered as a tuning matrix.  

It has been proved, that deviation vector  

kk
x

k xRxe −=  and input signal estimation error 

kk
u
k uue −=  will be invariant with respect to unknown 

input  
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that grounds the proposed blind deconvolution problem 
solution.  

Using the special form of mixing system model (1) 
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which may be obtained by nonsingular state-space 
transformation, and concretely define the matrices P , Q  
choice, one can admit  
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In such a case, for any 2Q  such that ,0det 2 ≠Q  



aggregating matrix may be found in the form 
( ),2

1
2 qnIPQR −
− −=  and consequently the UIO 

matrices for mixing system representation (10) are the 
following:  
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 Thus, in fact, the nonsingular matrix 2Q  specifies the 

similarity transformation and doesn’t change the IA  
spectrum, which as follows from (12), completely 
determined by only arbitrary tuning matrix 2P . The last 
may be choused by any type of pole placement method, 
and the problem will be solvable if matrix pair 

)~,~( 1222 AA  is observable. In particular, in such a way the 
designed inverse model may be stabilized for 
nonminimum-phase mixing system.  

IV. INVERSE MODEL REGULARIZATION  

The observability condition is obviously violated in the 
typical case, when pq = . At that 0

1
=ΩB , and F  

doesn’t depend from. 2P  In such a case, for the tuning 
properties guarantee, it is expediently to use so-called 
“regularized” UIO [7], which ensure the approximate 
observer invariance with respect to unknown input signal.  

,min22

H
HHCBRB →ε+−  (13) 

where 0>ε  - regularization parameter. Using (5), (9) 
one can obtain the regularized solution of inverse model 
synthesis equations as follows:  
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where ( ) ( ) ,CHIn ε−=εΠ  ( ) ( ).111
ε−=εΩ +BBIqB  

and the regularized projection matrices )(εΠ  and 

( )εΩ
1B  has the following form:  
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Matrix ( ) ( ) 1TT −+ +ε=ε SSISS q  may be considered 

as a regularized inverse of matrix ,S  at that 

( ) 1
0

−
=ε

+ =ε SS  and ( ) .0=ε ∞=ε
+S  

As a result, dynamics matrix )(εF  of regularized 
reduced-order inverse model define as: 
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Finally, taking into account, that 

( ) ( ) ,1T
111

−
+εε=εΩ BBIqB  from (14), (15) follows the 

reduced-order regularized inverse model equations: 
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where  
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Since the following equalities take place  
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the estimation error equations are:  
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It is obvious, that under ,mq =  regularized projection 

matrix ( ) 0
1

≠εΩB  for any 0>ε  and inverse model 

design problem become solvable, if pair matrix 
))(~),(~( 1122 εε AA  is observable. The regularization 



parameter ε  is selected based on trade-off between the 
desired observer dynamic properties, degree of stability in 
particular, and value of additional dynamic error 
component, proportional to the input signal, caused by 
inverse model regularization.  

V. SOURCE SIGNAL IDENTIFICATION 

Consider the source signal model as a superposition of 
single harmonics with arbitrary frequencies:  
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where kv  - some scalar component of source vector 

signal ku  at instant k , m  - number of harmonics with 

frequencies π<π=ω< 020 Tf jj , 0T  - sampling  

period, kξ  - random zero mean measurement noise. 
Using z - transform, the model (21) may be presented 

in the form: 
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Realizing the inverse transition in time domain, the 
equation (22) may be represent in the linear auto-
regression form:  
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where
( ) T

12111 ),,,2(, +−−−−+−− ++= mkkmkmkmk vvvvvmkv K

is the signal "prehistory" vector, ( )110
T ,...,, −βββ=β m  - 

model parameters. 
Using the quadratic identification criterion 
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one can obtain the recurrent algorithm of source signal 
model identification: 
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where tuning parameter γ  may be used for trade-off 
adjusting between tracking and flittering properties of the 
algorithm (25).  

Frequencies jω  are connected with parameters jβ  by 
the following equation: 
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Consequently, an optimal one step forecast of source 
signal obtained by current estimates may be obtained as: 
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Optimal prediction of wave signal for p  steps pkv +
)

 
may be obtained in the similar manner using the one step 
prediction (27) : 

( ) ,1,, 2
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where elements iv , 1−+≤≤ pkik  in vector 

( )mpkv ,+)
 are replaced by their predicted values found 

in accordance with (27). 

VI.  CONCLUSIONS  

The proposed method for blind deconvolution and 
source separation based on designed mixing system 
inverse model ensures the possibility of arbitrary unknown 
input signal real time estimation without necessity of 
essential a priory information about the signals. The 
advantage of suggested method is in the fact that the 
designed inverse model has the desired dynamic 
properties and may be stabilized for nonminimum-phase 
mixing system. The proposed approach also may be used 
for input signals identification and prediction as well as 
deconvolution inverse model stochastic optimization in 
the presence of random noise.  
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